

North America, South America, and Australia/Oceania: P.O. Box 55603, Houston, TX 77255 • USA Phone: +1 713-688-9345 | valco@vici.com



Europe, Asia and Africa: Parkstrasse 2, CH-6214 Schenkon • Switzerland Phone: +41 41 925 6200 | info@vici.ch

# CHEMINERT® MODEL C55 & C65(Z) SELECTORS INSTALLATION & MAINTENANCE

# Technical Note 821

The Cheminert<sup>®</sup> C55 (HPLC) and C65 (LC) series selectors are integrated motor/valve assemblies designed specifically to be built into OEM systems.

# **INITIAL PRECAUTIONS**

After unpacking the injector, leave the protective cap over the valve ports until you are ready to install the unit. As supplied, all surfaces are clean and free of contaminants, and must be kept clean to prevent valve damage. Open ports and fittings cause unnecessary risk of particulate matter entering the valve and scratching the sealing surfaces, which is the most frequent cause of premature valve failure.

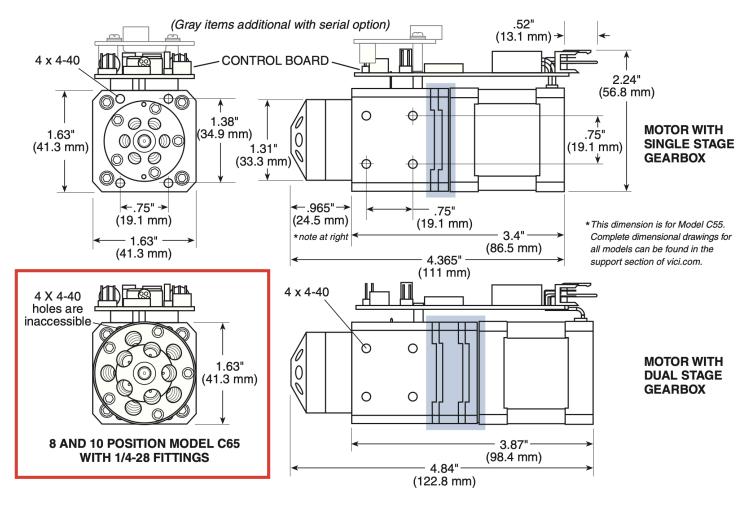
# WARNING: The most common source of particulate and chemical contamination is tubing which has not been properly cleaned before installation in the valve. Failure to observe proper cleanliness procedures during installation of the valve voids the manufacturer's warranty.

## INSTALLATION

## MOUNTING

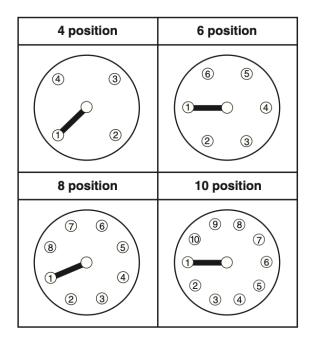
Mount the unit in a horizontal position. Avoid any orientation that positions the control board on the bottom, where it could be damaged by leakage. Mounting hole locations are shown in **Figure 1**. There are four 4-40 tapped mounting holes on the valve face of the gearbox and another four on the side of the gear housing.

**NOTE:** 8 and 10 port valves with 1/4-28 fittings have larger bodies which block the mounting holes on the valve face, as highlighted in the red box of **Figure 1**.


## **ELECTRICAL CONNECTIONS**

Cables for electrical connections can either be ordered from VICI or constructed in-house. To order from VICI, request product numbers I-25176 for the I/O control cable and I-24780 for the power cable.

If you prefer to make your own cables for I/O control and power:


1. Use a Molex 26-03-4020 shell and 08-58-0111 contacts with 22 awg stranded wire to supply 24 volt current (3 amps recommended) to the connector marked J1 (See **Figure 3**). The motor can draw as much as 2.5 amps during movement so make sure there is adequate power available, and do not share power with other sensitive circuits.

# FIGURE 1: Dimensions for models with single stage gearbox (top) and dual stage gearbox (bottom). The shading indicates the area to check for a quick model identification.



#### **VALVE SCHEMATICS & SWITCHING TIMES**

#### **FIGURE 2: Valve schematics**



## Table 1: Time required to move between positions

| SINGLE STAGE |            |                      |  |  |
|--------------|------------|----------------------|--|--|
|              | 1 POSITION | EACH ADDTL. POSITION |  |  |
| 4 positions  | 150 ms     | 111 ms               |  |  |
| 6 positions  | 115 ms     | 71 ms                |  |  |
| 8 positions  | 96 ms      | 55 ms                |  |  |
| 10 positions | 85 ms      | 43 ms                |  |  |

| DUAL STAGE   |            |                      |  |  |
|--------------|------------|----------------------|--|--|
|              | 1 POSITION | EACH ADDTL. POSITION |  |  |
| 6 positions  | 269 ms     | 230 ms               |  |  |
| 8 positions  | 212 ms     | 173 ms               |  |  |
| 10 positions | 184 ms     | 133 ms               |  |  |
| 12 positions | 154 ms     | 118 ms               |  |  |

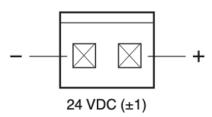
**NOTE:** On the initial power up, the actuator automatically executes a startup sequence to find its location flag. This sequence, which takes 1.45 seconds on a single stage actuator and 4.2 seconds on a dual stage actuator, ends with the valve in position 1. After the sequence is finished, the valve can be positioned as desired.

2. Use an Amphenol 65846-015LF shell and 47715-000LF contacts to make the connection to Connector J3, which provides the contact closure input and detects the output of the position sensor (see **Figure 4** and **Table 2**).

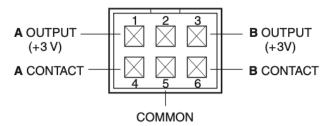
Position feedback is obtained from the A and outputs shown in **Figure 4**. These are 5 volt tolerant, 3 volt logic outputs, sourcing and sinking a maximum of 20 milliamperes each. An output will go high (+3V) when the valve reaches the respective position.

# CAUTION: Do not attempt to source or sink more than 20 mA from either output.

# MOTOR CONTROL METHODS


#### **STEP CONTACT CLOSURE**

Applying a connection between the common and "A contact" pins causes the selector to move to the next position in the direction set Table 2: Connector J3 by Jumper 1. (See "Jumper Settings" on page 3) The connection pin assignments must be opened before another step can be made.


## HOME CONTACT CLOSURE

Applying a connection between the common and "B contact" pins causes the selector to move to the HOME position (position 1) in the direction set by Jumper 1. (See "Jumper Settings" on page 3) The connection must be opened before another step can be made.

## FIGURE 3: Power connector J1, pin view.

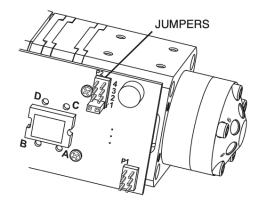


## FIGURE 4: Control connector J3, pin view.



# TABLE 2: Connector J3 pin assignments(Colors are in reference to VICI cable I-25176)

| PIN # | COLOR  | FUNCTION           |
|-------|--------|--------------------|
| 1     | Green  | A output (3.3 VDC) |
| 2     |        | Unused             |
| 3     | White  | B output (3.3 VDC) |
| 4     | Black  | A contact          |
| 5     | Shield | Common             |
| 6     | Red    | B contact          |


## **JUMPER SETTINGS**

Factory-set jumpers determine the actuator motor's angle of rotation (a function of the number of ports in the valve head) and direction of rotation; the default direction is clockwise (i.e., stepping from position 1 to position 2), as viewed from the motor end of the assembly.

**Figure 5** shows the jumper locations, with a jumper installed in jumpers position 1. *Jumper 4 is always installed for mult-iposition (selector applications.* (For two position applications, refer to Technical Note 819.)

Configuration information is presented verbally below. For a graphic presentation of the decision process, refer to **Figure 6**.

# **FIGURE 5: Location of jumpers**



#### SETTING THE ROTATION DIRECTION

- 1. Interrupt power to the motor by detaching power connector J1.
- 2. Remove/install jumper 1 as required. (Refer to **Table 3**)
- 3. Re-attach connector J1. The change takes effect when the motor is powered up.

#### SETTING THE ANGLE OF ROTATION

If you are changing the valve head to one with a different number of ports, jumpers 2 and 3 must be reconfigured. Remember that jumper 4 must remain empty for two position applications.

To set the motor for the proper amount of rotation:

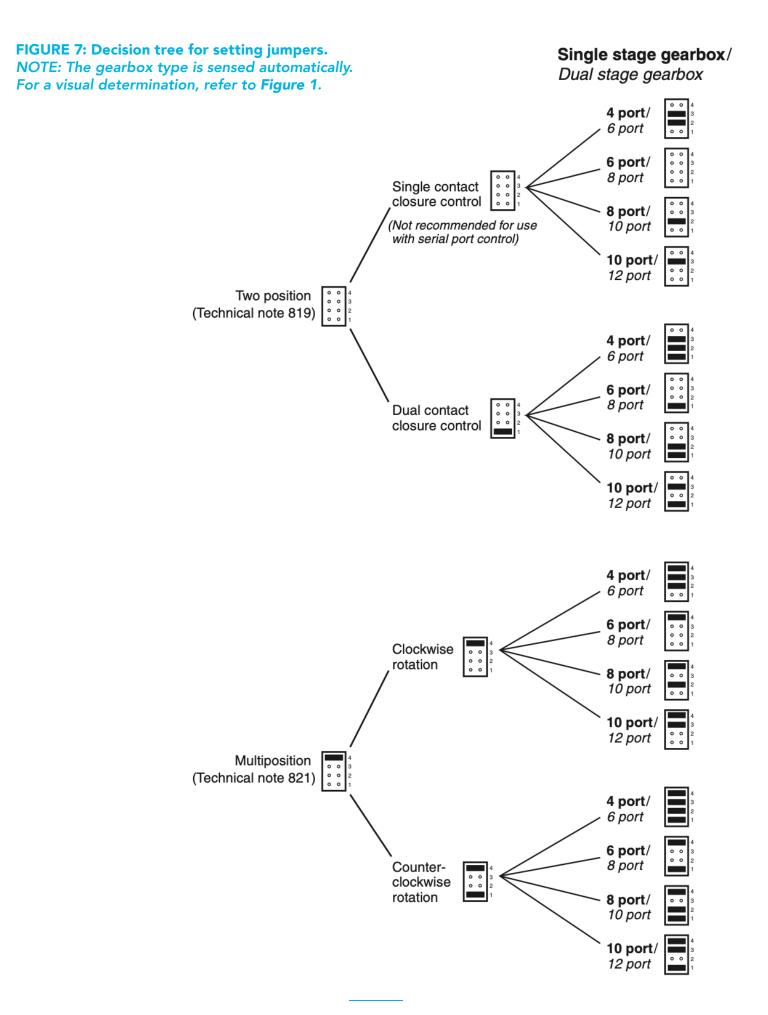
- 1. Interrupt power to the motor by detaching power connector J1.
- 2. Refer to **Figure 1** to determine if the unit has a single stage gearbox or a dual stage gearbox.
- 3. Consult **Table 4** to determine the correct jumper arrangement, and install jumpers as indicated. (For the purpose of determining rotation, the number of ports referenced means the number of ports forming a circle around the center port; the center port itself is not counted.)
- 4. Re-attach connector J1. The change takes effect when the motor is powered up.

#### **RESTORING THE DEFAULT BAUD RATE**

To restore the baud rate to the factory default of 9600:

- 1. Interrupt power to the motor by detaching power connector J1.
- 2. Remove jumpers 3 and 4, noting their location for proper re-installation.
- 3. Install a jumper as shown in Figure 6.
- 4. Re-attach connector J1. The rate change takes effect when the motor is powered up.
- 5. Detach power connector J1 and restore jumpers 3 and 4 to their previous configuration.
- 6. Re-attach connector J1.

# **TABLE 3: Jumper settings for rotation direction**(as viewed from the motor end)


| DIRECTION         | JUMPER 1 |
|-------------------|----------|
| Clockwise         | No       |
| Counter-clockwise | Yes      |

#### **TABLE 4: Jumper settings for number of ports**

| SINGLE STAGE |     |     | DUAL STAGE |     |     |
|--------------|-----|-----|------------|-----|-----|
| JUMPER:      | 2   | 3   | JUMPER:    | 2   | 3   |
| 4 post.      | Yes | Yes | 6 post.    | Yes | Yes |
| 6 post.      | No  | No  | 8 post.    | No  | No  |
| 8 post.      | Yes | No  | 10 post.   | Yes | No  |
| 10 post.     | No  | Yes | 12 post.   | No  | Yes |

# FIGURE 6: Jumper position to restore default baud rate





# ACTUATORS WITH OPTIONAL SERIAL CONTROL (MUST BE SPECIFIED AT TIME OF PURCHASE)

RS-232 and RS-485 communication require a terminal emulation program. There are many emulators available for free on the internet. Though the programs vary, in general you will select "Serial" from among various types of connections, select the COM port which will be used, name the connection, and set the port baud rate as shown in Table 7 (9600, or 9K60, is the factory default). The rest of the configurations are fixed at no parity, 8 data bits, 1 stop bit, no hardware or software handshaking.

A three-pin connector is used for the serial interface: pin assignments are listed in the table at right. Use VICI cable I-22697 or make your own with the parts named below the table. The implementation of RS-485 is half-duplex two wire with ground, and uses the same 3 pin output connector as RS-232.

With the software running, check the communication link between the computer and the serial port by typing /?<enter>. If the link is functioning, the menu to the right will appear on your monitor:

# SERIAL COMMUNICATION PROTOCOL

## **TABLE 5: Pin assignments**

| PIN # | RS-232            | RS-485 |  |
|-------|-------------------|--------|--|
| 1     | Ground            | Ground |  |
| 2     | Transmit to host  | A ()   |  |
| 3     | Receive from host | B (+)  |  |
|       |                   |        |  |

Requires: Amphenol shell 102241 Amphenol pins 187756-1 OR VICI cable I-22697

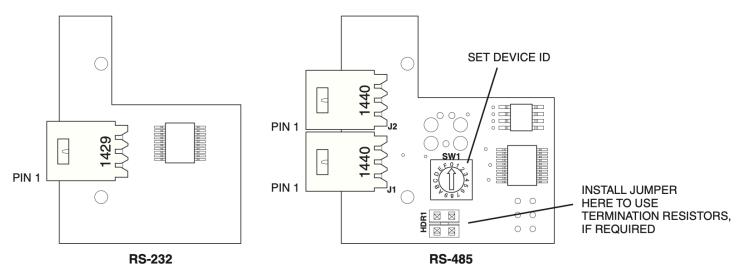
# **CONTROL COMMAND LIST**

| GO[nn]    | Move to nn position                   |
|-----------|---------------------------------------|
| CW[nn]    | Move Clockwise to nn Position         |
| CC[nn]    | Move Counter Clockwise to nn Position |
| СР        | Returns Current Position              |
| SB[nnnnn] | Set the Baud Rate to nnnnn            |
| VR        | Firmware Version                      |
| /?        | Displays This List                    |

Serial communication is based on an ASCII string protocol. Carriage Return (OD hex) characters parse the communications by defining the end of each command. Software flow control (Xon/Xoff) and hardware handshaking are not supported. The table below (**Table 6**) describes and explains all the commands available. A fuller explanation follows.

# TABLE 6: Commands and descriptions

| SERIAL COMMANDS |                                                                                                                              |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>CC</b> n     | Sends the actuator counterclockwise to position <i>n</i> , where <i>n</i> is A or B                                          |  |  |  |
| СР              | Displays the current position                                                                                                |  |  |  |
| CWn             | Sends the actuator clockwise to position $n$ , where $n$ is A or B                                                           |  |  |  |
| <b>DT</b> n     | Displays/set an inject delay interval ( <i>n</i> seconds before the actuator returns to previous position)                   |  |  |  |
| E+/E-           | Enable/disable the terminal echo and prompt (not available for RS-485)                                                       |  |  |  |
| GOn             | Sends the actuator to position <i>n</i> , where <i>n</i> is A or B                                                           |  |  |  |
| IC+/IC-         | Enable/disable the invalid command response                                                                                  |  |  |  |
| LF+/LF-         | Add/remove line feed to serial string, output only (not available for RS-485)                                                |  |  |  |
| MD              | Displays the unit model number                                                                                               |  |  |  |
| QS+/QS-         | Enable/disable quiet serial output during startup (not available for RS-485)                                                 |  |  |  |
| R+/R-           | Enable/disable position reporting                                                                                            |  |  |  |
| RC              | Report the valve configuration                                                                                               |  |  |  |
| SB              | Displays the current baud rate                                                                                               |  |  |  |
| <b>SB</b> nnnn  | Sets the baud rate. Refer to the table below for <i>nnnn</i> values.                                                         |  |  |  |
| SN              | Displays the unit serial number                                                                                              |  |  |  |
| то              | Sends the actuator to the opposite position (ignored in single contact closure mode)                                         |  |  |  |
| TT              | Sends the actuator to the opposite position, delays, and returns to original position (ignored in dual contact closure mode) |  |  |  |
| VR              | Displays the part number and date of the firmware                                                                            |  |  |  |
| /?              | Displays a list of valid commands                                                                                            |  |  |  |


#### **COMMAND REFERENCE**

**NOTE:** Repeated direction reversals (CC and CW commands) without passing the internal orientation flag located between the two topmost ports (for example, ports 5 and 6 of a 6 position model) are not recommended, due to possible rotor slippage.

## **TABLE 7: Baud rate values**

| <b>CC</b> [nn] | Moves the ac                                                                                                                                             | tuator in a counterclockwise direction, where                                                                          |           |      |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|------|--|--|--|
|                | nn = a number from 1 to the current set number of positions                                                                                              |                                                                                                                        | BAUD RATE | nnnn |  |  |  |
|                |                                                                                                                                                          | r—see page 3)                                                                                                          | 4800      | 4K80 |  |  |  |
|                | Examples                                                                                                                                                 |                                                                                                                        | 9600      | 9K60 |  |  |  |
|                | Command:                                                                                                                                                 | <b>CC</b> <enter><br/>Sends the actuator counterclockwise one position</enter>                                         | 19200     | 19K2 |  |  |  |
|                | Command:                                                                                                                                                 | <b>CC3</b> <enter><br/>Sends the actuator counterclockwise to position 3</enter>                                       | 38400     | 38K4 |  |  |  |
| СР             | Displays the current position of the actuator                                                                                                            |                                                                                                                        | 57600     | 57K6 |  |  |  |
|                | Example                                                                                                                                                  |                                                                                                                        | 115200    | 115K |  |  |  |
|                | Command:                                                                                                                                                 | <b>CP</b> <enter><br/>Returns (via the serial port) the current position, eithe</enter>                                | er A or B |      |  |  |  |
| <b>CW</b> [nn] | Moves the actuator in a clockwise direction, where<br>nn = a number from 1 to the current set number of positions (set by jumper—see page 3)             |                                                                                                                        |           |      |  |  |  |
|                | Examples                                                                                                                                                 |                                                                                                                        |           |      |  |  |  |
|                | Command:                                                                                                                                                 | <b>CW</b> <enter><br/>Sends the actuator clockwise one position CW3<ent< td=""><td>er&gt;</td><td></td></ent<></enter> | er>       |      |  |  |  |
|                | Command:                                                                                                                                                 | CW3 <enter></enter>                                                                                                    |           |      |  |  |  |
|                |                                                                                                                                                          | Sends the actuator clockwise to position 3                                                                             |           |      |  |  |  |
| SB [nnnn]      | Sets the baud rate, where<br>nnnn = a value from the table at right                                                                                      |                                                                                                                        |           |      |  |  |  |
|                | Example                                                                                                                                                  |                                                                                                                        |           |      |  |  |  |
|                | Command:                                                                                                                                                 | <b>SB19K2</b> <enter><br/>Sets the baud rate to 19200</enter>                                                          |           |      |  |  |  |
| <b>GO</b> [nn] | Moves the actuator to position nn via the shortest path, where<br>nn = a number from 1 to the current set number of positions (set by jumper—see page 3) |                                                                                                                        |           |      |  |  |  |
|                | Examples                                                                                                                                                 |                                                                                                                        |           |      |  |  |  |
|                | Command:                                                                                                                                                 | mand: <b>GO</b> <enter><br/>Advances the actuator to the next position</enter>                                         |           |      |  |  |  |
|                | Command:                                                                                                                                                 | <b>GO3</b> <enter><br/>Moves the actuator to position 3 via the shortest pat</enter>                                   | h         |      |  |  |  |
| VR             | Reports the current firmware version of the main PCB (via the serial port)                                                                               |                                                                                                                        |           |      |  |  |  |
|                | Example                                                                                                                                                  |                                                                                                                        |           |      |  |  |  |
|                | Command:                                                                                                                                                 | nand: <b>VR</b> <enter><br/>Returns (via the serial port) the current revision of the firmware</enter>                 |           |      |  |  |  |

# **FIGURE 8: Serial boards**



# **ADDITIONAL INFORMATION ON THE RS-485 OPTION**

#### HARDWARE PROTOCOL

The RS-485 hardware protocol is half-duplex implementation – two wires with a ground. There are two connectors, J1 and J2, which are connected in parallel to allow easy daisy chaining of multiple devices.

#### HARDWARE TERMINATION

The RS-485 port on the host computer or controlling device generally includes terminating resistors, so on short cables no termination is required. However, if many devices are attached and/or the actuator is on the end of a long communication cable, the termination jumpers on the furthest device from the master RS-485 controller should have termination enabled. To use termination resistors, install a jumper on the header labeled HDR1, oriented as shown in **Figure 8** on page 6.

#### HARDWARE ID SET

The firmware requires a serially-addressed ID, which on this board is set by the 16 position rotary switch labeled SW1. The ID is set either as a number from 0 - 9 or a letter from A - F, as selected by the arrow on the face of SW1.

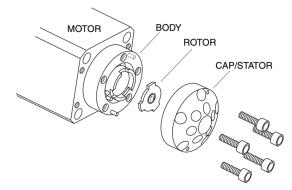
#### SOFTWARE PROTOCOL

The software protocol requires a forward slash [/] as a beginning-of-message character, followed by a single character ID. The end-of-message character which terminates the command is a <CR>. The standard RS-232 serial port commands are then supported within that protocol.

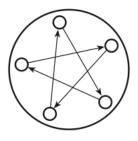
#### Example:

With the settings in **Figure 8**, the RS-232 command **VR**<enter> becomes /**OVR**<enter> in the RS-485 protocol; / is the start-of-message character, **0** is the current ID of the device, and **VR**<enter> is the command to be executed.

**NOTE:** Of the commands on listed on page 7, **E+/E-, LF+/LF-,** and **QS+/QS-** work only for RS-232; they are not available in RS-485 operation.


# **CLEANING AND ROTOR REPLACEMENT**

These valves have polished sealing surfaces which must be protected during any disassembly or cleaning procedure. Work in a clean environment and always set parts on a soft tissue or clean paper. Cleaning a valve can often be accomplished by flushing all the lines with appropriate solvents. Do not disassemble the valve unless system malfunction is definitely isolated to the valve.


# **DISASSEMBLY (REFER TO FIGURE 9)**

- Use a 3/32" hex driver to remove the 5-40 socket head screws that secure the stator to the valve body. Alternate among the five screws in the sequence indicated in Figure 10, loosening them in quarter-turn (90°) increments until all load is removed.
- 2. To ensure that the sealing surface of the stator is not damaged, rest it on its outer face. Or, if the tubing is still connected, leave it suspended by the tubing.
- 3. With your fingers or a small tool, gently pry the rotor away from the driver.
- 4. Examine the rotor sealing surface for scratches. If you see any, the rotor should be replaced.

# FIGURE 9: Exploded view of a typical injector



# FIGURE 10: Loosening and tightening order



- 5. Examine the stator sealing surfaces. If scratches are visible between the ports, that part should be replaced or resurfaced. Call VICI for help in determining if resurfacing is feasible.
- 6. Clean all the parts thoroughly with an appropriate solvent, taking care that no surfaces get scratched. (A common problem with HPLC is the formation of buffer crystals, which are usually water-soluble.) It is not necessary to dry the rotor.

# REASSEMBLY

- 1. Replace the rotor in the driver, making sure that the rotor sealing surface with its engraved flow passages is facing out. The tabs on the rotor have an asymmetrical pattern to prevent assembly with improper orientation.
- 2. Replace the stator. Insert the five socket head screws and tighten them gently until they start to get snug. Alternate among the five screws in the sequence indicated in Figure 10, tightening them in quarter-turn (90°) increments until the stator is flush against the valve body. Do not over-tighten the screws they simply hold the assembly together and do not affect the sealing force, which is automatically set as the screws pull the stator against the valve body.
- 3. Test the valve by pressurizing the system. If it doesn't hold pressure, the valve should be returned to VICI Valco for repair.